

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2013
2. REPORT TYPE

CONFERENCE PAPER (Post Print)
3. DATES COVERED (From - To)

NOV 2010 – NOV 2012
4. TITLE AND SUBTITLE

REALTIME MOTION DETECTION BASED ON THE SPATIO-
TEMPORAL MEDIAN FILTER USING GPU INTEGRAL HISTOGRAMS

5a. CONTRACT NUMBER
FA8750-11-1-0073

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Mahdieh Poostchi (University of Missouri), Kannappan Palaniappan
(University of Missouri), Filiz Bunyak (University of Missouri), Guna
Seetharaman (Air Force Research Laboratory)

5d. PROJECT NUMBER
T2MC

5e. TASK NUMBER
MI

5f. WORK UNIT NUMBER
SS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Computer Science
University of Missouri
316 University Hall
Columbia, MO 65211-3020

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

 AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2013-031

12. DISTRIBUTION AVAILABILITY STATEMENT
Distribution Approved For Public Release; Distribution Unlimited. This report is the result of contracted fundamental
research deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES
Copyright 2012 ACM. Proceedings from ICVGIP’12, December 6-19, 2012, Mumbai,India. This work was funded in
whole or in part by Department of the Air Force contract number FA8750-11-1-0073. One or more of the authors is a
U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is joint
owner of the work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright
owner.
14. ABSTRACT
We describe a parallel 3D spatio-temporal median filter algorithm implemented in CUDA for many core Graphics
Processing Unit (GPU) architectures using the integral histogram as a building block to support adaptive window sizes.
Both 2D and 3D median filters are also widely used in many other computer vision tasks like denoising, segmentation,
and recognition. Although fast sequential median algorithms exist, improving performance using parallelization is
attractive to reduce the time needed for motion detection in order to support more complex processing in multi-target
tracking systems, large high resolution aerial video imagery and 3D volumetric processing. Results show the frame rate
of the GPU implementation was 60 times faster than the CPU version for a 1K x 1K image reaching 49 fr/sec and 21
times faster for 512 x 512 frame sizes reaching 194 fr/sec. We characterize performance of the parallel 3D median filter
for different image sizes and varying number of histogram bins and show selected results for motion detection.

15. SUBJECT TERMS
Spatio-temporal median filtering, 3D median, GPU, integral histogram
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF RESPONSIBLE PERSON
STANLEY LIS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Realtime Motion Detection Based on the Spatio-Temporal
Median Filter Using GPU Integral Histograms

Mahdieh Poostchi
∗

Dept. of Computer Science
University of Missouri
Columbia, MO, USA

mpr69@mail.missouri.edu

Kannappan Palaniappan
Dept. of Computer Science

University of Missouri
Columbia, MO, USA

palaniappank@missouri.edu

Filiz Bunyak
Dept. of Computer Science

University of Missouri
Columbia, MO, USA

bunyak@missouri.edu

Guna Seetharaman
Air Force Research Laboratory

Rome, NY, USA
gunasekaran.seetharaman@rl.af.mil

ABSTRACT
Motion detection using background modeling is a widely
used technique in object tracking. To meet the demands of
real-time multi-target tracking applications in large and/or
high resolution imagery fast parallel algorithms for motion
detection are desirable. One common method for back-
ground modeling is to use an adaptive 3D median filter
that is updated appropriately based on the video sequence.
We describe a parallel 3D spatiotemporal median filter al-
gorithm implemented in CUDA for many core Graphics Pro-
cessing Unit (GPU) architectures using the integral histogram
as a building block to support adaptive window sizes. Both
2D and 3D median filters are also widely used in many
other computer vision tasks like denoising, segmentation,
and recognition. Although fast sequential median algorithms
exist, improving performance using parallelization is attrac-
tive to reduce the time needed for motion detection in order
to support more complex processing in multi-target tracking
systems, large high resolution aerial video imagery and 3D
volumetric processing. Results show the frame rate of the
GPU implementation was 60 times faster than the CPU ver-
sion for a 1K × 1K image reaching 49 fr/sec and 21 times
faster for 512 × 512 frame sizes reaching 194 fr/sec. We
characterize performance of the parallel 3D median filter for
different image sizes and varying number of histogram bins
and show selected results for motion detection.

Keywords
spatio-temporal median filtering, 3D median, GPU, integral
histogram

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’12, December 16-19, 2012, Mumbai, India
Copyright 2012 ACM 978-1-4503-1660-6/12/12 ...$15.00.

1. INTRODUCTION
Motion detection is often a critical early stage of video

object tracking. A common approach is to learn the sta-
tionary part of a video sequence using background model-
ing and detect moving foreground objects using background
subtraction [1, 2, 3]. Reliable background subtraction based
motion detection depends on several parameters such as
spatio-temporal illumination compensation, shadow detec-
tion, background update and the background model learn-
ing rate. In terms of background modeling, fast learning
leads to better adaptation to background changes but often
results in more spurious detections from small background
motions or missed detections when the object moves slowly
or becomes temporarily stationary and blends with the back-
ground model. On the other hand slow learning can result
in ghosting artifacts [4, 5]. The Median filter is a spatio-
temporal nonlinear filter used for image enhancement and
analysis [2, 6]. Median filter is commonly used in many
computer vision tasks like segmentation, detection, track-
ing or recognition to discriminate moving objects from the
background [1, 7, 8]. In this case the motion detection filter
is

|I(x, y, c)− IMed(x, y, c)| < τ (1)

where I(x, y, c) is the current image pixel intensity value at
(x, y) and IMed(x, y, c) is the spatio-temporal median value
at pixel (x, y) in the current image, c,

IMed = Median
∆x,∆y

{Ic−T
2
, ..., Ic, ..., Ic+ T

2
}

Otsu thresholding can be used to adaptively compute the
threshold value τ for each time step. The most important
advantage that median filter has over other well-known back-
ground modeling techniques such as mixture of Gaussians
[9], Kalman filter [10] or Wallflower [11], is that it avoids
blending pixel values. The output of the median corresponds
to one of the values in the neighborhood and it does not
create unrealistic pixel values out of the image content [12].
However, the median operation is computationally expen-
sive which limits its application for real-time, large scale,
high resolution imagery. In this paper we propose a fast
implementation for background estimation model using 3D
median filtering for motion detection, based on the integral
histogram and utilizing many core Graphics Processing Unit

1

m

n

T+1

* m

n

T+1

*

(a)

n

T+1

m *

n

T+1

m *

IT-1

IT

IT+1

IT-1

IT

IT+1

(b)

Figure 1: Spatio-temporal median filter sliding window

operation. (a) 3D box median filtering [28], (b) 2D+t

median filtering

(GPU) architectures using the CUDA programming model.
Fast and approximate foreground motion estimation is

quite useful for a number of video analysis and tracking ap-
plications including video summarization [13, 14, 15], track-
ing in wide area imagery [16, 17, 18, 19], object detection
and tracking in biomedical applications [20, 21, 22, 23, 24].
Our previous work in parallelizing motion detection include
[25, 26, 27].

The main contributions of this paper include implemen-
tation of an integral histogram-based multi-scale 3D median
filter that can handle large temporal windows, design of an
efficient data structure for integral histogram, its layout in
GPU memory, and optimization of the kernel configuration
to maximize the resource utilization of the GPUs and to
minimize the data movement. In the case of spatio-temporal
median filter T +1, image arrays are transferred to the GPU
using double buffering. Meanwhile the individual integral
histograms are computed for each image array and the joint
integral histogram is computed for T + 1 individual inte-
gral histograms. Finally, the medians are computed for each
pixel using the joint local integral histograms of kernel size
m×n in parallel which results in high GPU utilization. Re-
sults show the frame rate of the GPU implementation versus
the CPU implementation.

Section 2 presents a short review of the spatio-temporal
median filter based on histogram. Section 3 includes the
proposed spatio-temporal median filtering based on GPU in-
tegral histogram, followed by experimental results and con-
clusions.

2. SPATIO-TEMPORAL MEDIAN FILTER
Several techniques are typically used to perform 3D spatio-

temporal median filtering. Figure 1 shows two types of slid-
ing window operations for computing the 3D median filter
[28]. Having a three-dimensional array mask (Fig. 1(a)) with
size m× n× (T + 1), the real spatio-temporal median value
for each pixel at (x, y) of current frame z, is obtained by

M3D(x, y, z) = Median
∆x∈[−m−1

2
,m−1

2
]

∆y∈[−n−1
2

,n−1
2

]

∆t∈[−T
2
,T
2

]

{I(x + ∆x, y + ∆y, z + ∆t)}

(2)

Algorithm 1 3D Median Filtering Based on Histogram

Input : Vector v stores pixel values located in the mask filtering
box with size m× n× (T + 1) centered at (x, y)

Output : med returns the median of v
1: Histv = Hist(v)
2: cumsum = 0 //cumulative function of the histogram
3: for med=0:bins do
4: if Histv(med) > 0 then
5: cumsum+ = Histv(med)

6: if cumsum > m×n×(T+1)
2

then
7: break;
8: end if
9: end if

10: end for
Return med

where I(x+ ∆x, y+ ∆y, z+ ∆t) are pixel values located in
the mask kernel with size m× n centered at (x, y) over the
previous and following T frames around the current frame.
Median(.) is the median operation which can be sort-based
or selection-based.

A fast separable approximation to the 3D spatio-temporal
median filter is to decouple the spatial and temporal median
computation which we refer to as M2D+t. In this case, me-
dian computations are separated into two steps: first, spatial
2D median filtering using an m× n kernel size is applied to
each image; then the temporal median at each pixel (x, y) is
obtained by finding the median over T + 1 spatial medians
(Fig. 1(b)). Note that this is an approximation of the 3D
median across a block of m × n × (T + 1) pixel values in-
side the filtering 3D kernel. The fast separable median filter
approximation for the stationary background estimate is,

M2D+t(x, y, z) = (3)

Median
∆t∈[−T

2
,T
2

]
{ Median

∆x∈[−m−1
2

,m−1
2

]

∆y∈[−n−1
2

,n−1
2

]

{I(x + ∆x, y + ∆y, z + ∆t)}}

The key point is that all of the spatial median operations
are computationally independent which can be executed in
parallel to improve the performance.

2.1 Median Operation
Median filtering techniques can be grouped as sorting-

based or histogram-based. The sort-based approaches need
to generate a list of ordered data; then the median value
is the middle value of the sorted list. Sorting is computa-
tionally expensive and as the size of 3D median filtering box
increases, the computational cost of sorting increases sig-
nificantly. In the best case, the complexity is O(r3) using
bucket sort [29], where r is the filtering kernel radius. But it
is still not practical especially in the case of large-scale high
resolution image sequences.

The time complexity of the histogram based median com-
putation is much more efficient. The classic Huang’s fast
2D median filtering algorithm has O(r) complexity [30]. Re-
cently, Perreault presents a simple, fast median filter sequen-
tial implementation that has O(1) constant time [29]. In
general, once the cumulative histogram of the median mask
filter kernel has been calculated for a pixel, the median value
is the first bin histogram which has a greater or equal value
than the median index. The median index is defined as
half of the median mask filter kernel (i.e. box) size. Algo-
rithm 1 shows the spatio-temporal median filter using the
histogram approach. The use of integral histograms make
the median filter computation even faster by providing the

2

 Vs : Vertical Cumulative Sum
 Hs : Horizontal Cumulative Sum

(x, y)

),( cr

R

),( cr

),( cr),( cr

Figure 2: (a) Computation of the histogram up to loca-

tion (x, y) using a cross-weave horizontal and vertical scan

on the image. (b) Computation of the histogram for an

arbitrary rectangular region R (origin is the upper-left

corner with y-axis.)

local histograms of an arbitrary-sized box kernel in constant
time to find the medians or even other statistical moments
like mean, variance and standard deviation.

3. SPATIO-TEMPORAL MEDIAN FILTER
BASED ON GPU INTEGRAL HISTOGRAM

We propose a fast median operation based on integral
histograms and its parallel implementation utilizing many
core Graphics Processing Unit (GPU) architectures using
the CUDA programming model for motion detection.

3.1 Integral Histogram
The integral histogram is a recursive propagation prepro-

cessing method used to compute local histograms over arbi-
trary rectangular regions in constant time [31, 32]. The effi-
ciency of the integral histogram approach enables real-time
histogram-based exhaustive search in vision tasks [33, 34,
35]. The integral histogram is extensible to higher dimen-
sions and different bin structures. The integral histogram
at position (x, y) in the image holds the histogram for all
the pixels contained in the rectangular region defined by the
top-left corner of the image and the point (x, y) as shown in
Figure 2. The integral histogram for the region defined by
the spatial coordinate (x, y) and bin variable b is defined as:

H(x, y, b) =

x∑
r=0

y∑
c=0

Q(I(r, c), b) (4)

where Q(I(r, c), b) is the binning function that evaluates to
1 if I(r, c) ∈ b for the bin b, and evaluates to 0 otherwise.
Sequential computation of integral histograms is described
in Algorithm 2. Given the image integral histogram H, com-
putation of the histogram for any test region R delimited by

Algorithm 2 Sequential Integral Histogram

Input : Image I of size h× w
Output : Integral histogram tensor IH of size h× w × b
1: Initialize IH:

IH← 0
IH(I(w,h),w,h)← 1

2: for z=1:b do
3: for x=1:w do
4: for y=1:h do
5: IH(x, y, z)← IH(x− 1, y, z) + IH(x, y − 1, z)

−IH(x− 1, y − 1, z) +Q(I(x, y), z)
6: end for
7: end for
8: end for

Return IH

Algorithm 3 GIH-STS: GPU Integral Histogram Calculation
Using Scan-Transpose-Scan

Input : Image I of size h× w, number of bins b
Output : Integral histogram tensor IH of size b× h× w
1: Initialize IH

IH← 0
IH(I(w,h),w,h)← 1

2: for all b× h blocks in parallel do
3: //horizontal cumulative sums
4: Prescan(IH)
5: end for
6: //transpose the histogram tensor

IHT ← 3D Transpose(IH)
7: for all b× w blocks in parallel do
8: //vertical cumulative sums
9: Prescan(IHT)

10: end for
Return 3D-Transpose(IHT)

points {(r−, c−), (r−, c+), (r+, c+), (r+, c−)} reduces to the
combination of four integral histograms:

h(R, b) = H(r+, c+, b)−H(r−, c+, b)

−H(r+, c−, b) +H(r−, c−, b) (5)

Figure 2 illustrates the notation and accumulation of integral
histograms using vertical and horizontal cumulative sums
(prescan), which is used to compute regional histograms.

However, the intrinsic parallel characteristics of the inte-
gral histogram motivates further improvements in speed up
by parallelizing it for high performance computing configu-
rations. Bellens, et al. developed parallel implementations
of the integral histogram for Cell/B.E. processors [32] and
we describe a GPU version in [36].

3.2 Parallelized Integral Histogram
The cross-weave scan mode (Fig. 2), enables cumulative

sum tasks over rows (or columns) to be scheduled and exe-
cuted independently allowing for inter-row and column par-
allelization. In fact the integral histogram computations can
be divided into two prescans over the data. First, a horizon-
tal prescan that computes cumulative sums over rows of the
data, followed by a second vertical prescan that computes
cumulative sums over the columns of the first scan output.
Taking the transpose of the horizontally prescanned image
histogram, enables us to reapply the same (horizontal) pres-
can algorithm effectively on the columns of the data.
An image with dimensions h×w produces an integral his-

togram tensor of dimensions h×w×b, where b is the number
of bins in the histogram. We have mapped the histogram
tensor to a 1D row major ordered array for efficient access
as shown in Figure 3. In order to reduce the communication
overhead between host and device, data transfer is limited to
send an image to the GPU and the final integral histogram
tensor back to the CPU. There is no other data back and

…

…

…

…

b

w

h

b0 b1 bn-1

row0 rowh-1

w

… …

w*h

Figure 3: Integral histogram tensor represented as 3D

array data structure (left), and equivalent 1D array map-

ping (right).

3

#define BLOCK_DIM 32

void Transpose3D (int* TArray, int* Array, int w, int h, int b)

{ dim3 grid(b, w/BLOCK_DIM, h/BLOCK_DIM);

 dim3 threads(BLOCK_DIM ,BLOCK_DIM ,1);

 3DTranspose_kernel <<< grid,threads >>> (T_Array, Array, w, h);

 }

__global__ void 3DTranspose_kernel (int *odata, int *idata, int width, int height)

{

__shared__ int block[BLOCK_DIM][BLOCK_DIM+1];

// read the matrix tile into shared memory

unsigned int xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;

unsigned int yIndex = blockIdx.z * BLOCK_DIM + threadIdx.y;

if ((xIndex < width) && (yIndex < height))

{unsigned int index_in = blockIdx.x * width * height + yIndex * width + xIndex;

 block[threadIdx.y][threadIdx.x] = idata[index_in];

}

__syncthreads();

// write the transposed matrix tile to global memory

xIndex = blockIdx.z * BLOCK_DIM + threadIdx.x;

yIndex = blockIdx.y * BLOCK_DIM + threadIdx.y;

if ((xIndex < height) && (yIndex < width))

{unsigned int index_out = blockIdx.x * width * height + yIndex * height + xIndex;

 odata[index_out] = block[threadIdx.x][threadIdx.y];

}

}

Figure 4: CUDA 3D transpose kernel code

forth between CPU and GPU until the integral histogram
calculations have been complected on the GPU.

Our GPU implementation of integral histogram [36] which
is described in Algorithm 3 combines cross-weave scan mode
with an efficient parallel prefix sum operation. Harris, et
al. present an efficient implementation of all-prefix-sums
operation using the CUDA programming model [37], that
can be used to implement Algorithm 3. For an array of
size n the prescan operation requires only O(n) operations:
2×(n−1) additions and (n−1) swaps. We apply prefix-sums
to the rows of the histogram bins (horizontal cumulative
sums or prescan), then transpose the array and reapply the
prescan to the rows to obtain the integral histograms. In
order to allow a single transpose operation, we extended
the optimized 2-D transpose kernel described in [38] to a 3D
transpose kernel by using the bin offset in the indexing (Fig.
4). The optimized transpose kernel uses zero bank conflict
shared memory and guaranties that global reads and writes
are coalesced.

Our GPU integral histogram implementation benefits from
minimum data transfer between CPU and GPU, double buffer-
ing and high GPU utilization. The number of threads is
automatically determined based on the image size to ensure
maximum occupancy per kernel (for more info refer to [36]).

3.3 3D Median Filter Based on Integral His-
togram

The integral histogram of an image provides the local in-
tegral histogram of every arbitrary target region in constant
time (equation 5). Taking advantages of this property en-

IntHist_Tail

T

Joint_IntHist

+

IntHist_Head

-
T

Figure 5: Updating the joint integral histogram for me-

dian filtering.

Algorithm 4 3D Median Filter Based on Integral Histogram

Input : Image sequences I[k] of size h× w,
number of bins b,
size of image history T + 1

Output : Medians M[k−T]e of size h× w
1: Initialize JointIH
2: IH tail=JIH=Integral Hist(Quantized(image(1)));

//Compute the first joint integral histogram for the first
T + 1 frames

3: for Fr = 2 : T + 1 do
4: IH[Fr] = Integral Hist(Quantized(image(Fr)));
5: JIH = JIH + IH[Fr];
6: end for

7: //Calculate the Median of current frame
8: for Fr = T + 2 : k do
9: //Update the IH head

10: IH head=Integral Hist(Quantized(image(Fr)));

11: //Update the Joint Integral Histogram
12: JIH= JIH + IH head - IH tail;

13: //Update the IH tail
14: IH tail=Integral Hist(Quantized(image(Fr-T)));

15: //Compute Median [Fr − T
2

]

16: Median [Fr − T
2

] = ComputeLocalMedian(JIH)
17: end for

ables us to compute the medians in constant time for all
target pixels using its local integral histogram. Algorithm 4
shows spatio-temporal median computations using the inte-
gral histogram (assuming image sequences of size k which
are transferred to the GPU using double buffering and a
spatio-temporal median filter of size m × n × (T + 1)). In
the initialization phase, the individual integral histograms
are computed for each image array. Meanwhile the joint in-
tegral histogram is computed for the first T + 1 individual
integral histograms (assume that T is an even number). Af-
ter creating the joint integral histogram, the median calcu-
lation phase started for frame T

2
+ 2. In each iteration, first,

the joint integral histogram is updated by adding the inte-
gral histogram of head image and subtracting the integral
histogram of tail image (Fig. 5). Then medians are com-
puted for each pixel using the joint local integral histograms
of kernel size m × n where local kernel integral histograms
can be obtained in O(1).

4. EXPERIMENTS
We implemented and evaluated background subtraction

using spatio-temporal median filter based on CPU and par-
allel GPU integral histogram implementations. Our experi-
ments were conducted on a 2.0 GHz Quad Core Intel CPU
(Core i7-2630QM) and two GPU cards: an NVIDIA Tesla
C2070 and an NVIDIA GeForce GTX 460. The former is
equipped with fourteen 32-core SMs and has about 5GB
of global memory, 48KB shared memory with compute ca-
pability 2.0. The latter consists of seven 48-core SM and
is equipped with 1GB global memory, 48KB shared mem-
ory with compute capability 2.1. The parallel GPU integral
histogram implementation is based on three kernel invoca-
tions: a single horizontal scan, a 3D transpose, and a ver-
tical scan. The integral histogram computations start after
transferring the image to the GPU, complete the calcula-
tion of the integral histogram on the GPU then transfer the
final integral histogram tensor back to the CPU (this has

4

128x128 256x256 512x512 1024x10242048x2048

10
0

10
1

10
2

10
3

Image Sizes (16 bins)

fr
/s

ec
 (

G
P

U
−I

H
−S

T
S

),
 lo

g1
0

TeslaC2070(448 cores)
Geforce GTX−460(336 cores)
CPU−Only

16 32 64 128 256
0

20

40

60

80

100

120

140

160

180

200

Different Number of Bins, 512x512 Image Size

fr
/s

ec
 (

G
P

U
−I

H
−S

T
S

)

TeslaC2070(448 cores)
Geforce GTX−460(336 cores)
CPU−Only

128x128 256x256 512x512 1024x10242048x2048
0

10

20

30

40

50

60

70

80

Image Sizes (16 bins)

S
pe

ed
up

 (
G

P
U

−I
H

−S
T

S
)

CPU/TeslaC2070(448 cores)
CPU/Geforce GTX−460(336 cores)

16 32 64 128 256
0

5

10

15

20

25

30

Different Number of Bins, 512x512 Image Size

S
pe

ed
up

 (
G

P
U

−I
H

−S
T

S
)

CPU/TeslaC2070(448 cores)
CPU/Geforce GTX−460(336 cores)

Figure 6: UP: Frame rate of our 3D median filter based on GPU integral histogram and CPU-only integral histogram

implementations: (UL) frame rate for different image sizes and 16 bins, (UR) frame rate for 512x512 image size and

different number of bins; Bottom: Speedup of proposed 3D median filter based on GPU integral histogram over CPU

using two NVIDIA graphic cards, (BL) Speedup for different image sizes and 16 bins with respect to CPU-only, (BR)

Speedup with varying number of bins for 512x512 image size.

16 32 64 128
0

20

40

60

80

100

120

140

160

180

200

Different Number of Bins, for 640x480 image size

fr
/s

ec

Cell/BE
TeslaC2070(448 cores)
Geforce GTX−480(480 cores)
Geforce GTX−460(336 cores)
CPU16
CPU8
CPU1

Figure 7: Frame rate performance comparison of the

GPU design versus CPU implementation using different

degrees of multi-threading, CPU1, CPU8, CPU16 and

Cell/B.E. performance results presented for wavefront

scan mode using 8 SPEs in[32].

the least communication overhead and the most GPU uti-
lization).Figure 6 summarizes the frame rate performance
and speed-up of the GPU implementations compared to the
sequential CPU-only implementation. The frame rate is de-
fined as the maximum number of images processed per sec-
ond. Since we use double buffering, the frame rate equals
(kernel execution time)−1 for compute bound cases, or
(data transfer time)−1 for data-transfer bound cases. Con-
sidering double buffering timing, our 3D median filter based
on GPU integral histogram achieves 194 fr/sec to compute
16-bin integral histogram for a 512 × 512 image (21 times
faster than CPU-only implementation) and 60 times faster
than the CPU version for 1K×1K image reaching 49 fr/sec
using the NVIDIA Tesla C2070 GPU. Figure 7 compares the
frame rate performance of our GPU integral histogram im-
plementation using different GPU hardware, with a sequen-
tial CPU implementation using different degrees of multi-
threading: CPU1 (1 thread), CPU8 (8 threads), CPU16 (16
threads). We have compared our performances to the best
performance of the IBM Cell/B.E integral histogram paral-
lel implementation computation using wavefront scan mode
[32]. In most cases, our performance is data-transfer-bound:
the achieved speedup is limited by transferring the data be-
tween CPU and GPU over the PCI-express interconnect,

5

Figure 8: Background subtraction for a sample DARPA VIVID stabilized aerial sequence using 3D median filter

based on GPU integral histogram using different number of bins, from left column to the right column: original image,

foreground using 16 bins integral histogram, foreground using 128 bins integral histogram, foreground using 256 bins

integral histogram.

rather than from the parallel execution on the GPU. Figure
8 shows sample background subtraction results for a DARPA
VIVID stabilized aerial sequence using the 3D median filter
based on GPU integral histogram using different number
of bins (16, 128 and 256). Figure 9 shows sample back-
ground subtraction results for two image modalities visible
and IR from the PETS2013 Benchmark background dataset
(first three rows) [39], and indoor hallway motion from the
OTCBVS Benchmark Dataset [40] (last three rows), using
the 3D median filter based on GPU integral histogram with
varying number of bins (16, 128 and 256). These results sug-
gest that in general for natural images with large dynamic
ranges using a lower number of bins in computing the in-
tegral histogram does not adversely degrade the detection
results.

5. CONCLUSIONS
Although the median filter is widely used in computer vi-

sion tasks, it is computationally expensive which limits its
application for large scale, high resolution imagery and real-
time requirements. We showed that an efficient GPU-based

parallel implementation of the spatio-temporal median filter
can be achieved using integral histograms. The median filter
based on GPU integral histograms not only takes advantage
of fast GPU processing but also enables us to compute the
median across multiple scales for all target pixels in constant
time. Results show the frame rate of the GPU implementa-
tion was 60 times faster than the CPU version for a 1K×1K
image reaching 49 fr/sec and 21 times faster for 512 × 512
frame sizes reaching 194 fr/sec. This opens up the possibil-
ity for speeding up a variety of computer vision detection
tasks.

6. ACKNOWLEDGMENTS
This research was partially supported by U.S. Air Force

Research Laboratory (AFRL) under agreement AFRL FA8750-
11-1-0073. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of AFRL or the U.S. Government. The U.S. Govt.
is authorized to reproduce and distribute reprints for Govt.
purposes notwithstanding any copyright notation thereon.

6

Figure 9: Background subtraction for PETS2013 Benchmark background dataset (first row frame 73, second row frame

161, third row frame 195) [39], an indoor hallway motion (seq. irin01) from OTCBVS Benchmark IR Database(row

four frame 5150, row five frame 8290 and row six frame 8329) [40], and outdoor motion and tracking scenarios (seq.

irw01) from OTCBVS Benchmark IR Database (row seven frame 332, row eight frame 399, row nine frame 480)[40]

using 3D median filter based on GPU integral histogram using different number of bins, from left column to the right

column: original image, background model (256 bins), foreground using 16 bins integral histogram, foreground using

128 bins integral histogram, foreground using 256 bins integral histogram.
7

7. REFERENCES
[1] SC Cheung and C. Kamath, “Robust techniques for

background subtraction in urban traffic video,” in Proc.
SPIE Visual Communications and Image Processing, 2004,
vol. 5308, pp. 881–892.

[2] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis,
“Background and foreground modeling using nonparametric
kernel density estimation for visual surveillance,” IEEE
Proceedings, vol. 90, no. 7, pp. 1151–1163, 2002.

[3] E. Maggio and A. Cavallaro, Video Tracking: Theory and
Practice, Wiley, 2011.

[4] S. S. Cheung and C. Kamath, “Robust background
subtraction with foreground validation for urban traffic
video,” EURASIP Journal on Applied Signal Processing,
vol. 14, pp. 2330–2340, 2005.

[5] R. Cucchiara, M. Piccardi, and A. Prati, “Detecting moving
objects, ghosts, and shadows in video streams,” IEEE
Trans. Pattern Analysis Machine Intelligence, vol. 25, no.
10, pp. 1337–1342, 2003.

[6] M. Piccardi, “Background subtraction techniques: a
review,” in IEEE Int. Conf. Systems, Man and
Cybernetics, 2004, vol. 4, pp. 3099–3104.

[7] JCS Jacques, C.R. Jung, and S.R. Musse, “Background
subtraction and shadow detection in grayscale video
sequences,” in SIBGRAPI 2005. IEEE, 2005, pp. 189–196.

[8] P. Viola and M.J. Jones, “Robust real-time face detectin,”
Int. J. Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[9] C. Stauffer and W.E.L. Grimson, “Adaptive background
mixture models for real-time tracking,” in IEEE CVPR
1999, 1999, vol. 2.

[10] K.P. Karmann, “Moving object recognition using an
adaptive background memory,” Proc. Time Varying Image
Processing, 1990.

[11] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers,
“Wallflower: Principles and practice of background
maintenance,” in IEEE ICCV 1999, 1999, vol. 1, pp.
255–261.

[12] D. Gutchess, M. Trajkovics, E. Cohen-Solal, D. Lyons, and
A.K. Jain, “A background model initialization algorithm for
video surveillance,” in IEEE ICCV 2001, 2001, vol. 1, pp.
733–740.

[13] M. H. Kolekar, K. Palaniappan, S. Sengupta, and
G. Seetharaman, “Event detection and semantic
identification using Bayesian belief networks,” 2009, pp.
554–561.

[14] M. H. Kolekar, K. Palaniappan, S. Sengupta, and
G. Seetharaman, “Semantic concept mining based on
hierarchical event detection for soccer video indexing,” J.
Multimedia, vol. 4, no. 5, pp. 298–312, October 2009.

[15] M. H. Kolekar, K. Palaniappan, and S. Sengupta,
“Semantic event detection and classification in cricket video
sequence,” in IEEE Indian Conference on Computer
Vision, Graphics and Image Processing, 2008, pp. 382–389.

[16] K. et al. Palaniappan, “Efficient feature extraction and
likelihood fusion for vehicle tracking in low frame rate
airborne video,” in 13th Conf. Information Fusion, 2010,
pp. 1–8.

[17] R. Pelapur and et al., “Persistent target tracking using
likelihood fusion in wide-area and full motion video
sequences,” in 15th Int. Conf. Information Fusion, 2012.

[18] I. Ersoy, K. Palaniappan, G. Seetharaman, and R. Rao,
“Interactive tracking for persistent wide-area surveillance,”
in Proc. SPIE Conf. Geospatial InfoFusion II (Defense,
Security and Sensing: Sensor Data and Information
Exploitation), 2012, vol. 8396.

[19] I. Ersoy, K. Palaniappan, and G. Seetharaman, “Visual
tracking with robust target localization,” in IEEE Int.
Conf. Image Processing, 2012.

[20] I.Ersoy, F.Bunyak, M.A.Mackey, and K.Palaniappan, “Cell
segmentation using Hessian-based detection and contour
evolution with directional derivatives,” in IEEE Int. Conf.
Image Processing, Oct. 2008, pp. 1804–1807.

[21] F. Bunyak, K. Palaniappan, O. Glinskii, V. Glinskii,
V. Glinsky, and V. Huxley, “Epifluorescence-based
quantitative microvasculature remodeling using geodesic
level-sets and shape-based evolution,” in 30th Int. IEEE
Engineering in Medicine and Biology Society Conf.
(EMBC), Vancouver, Canada, Aug. 2008, pp. 3134–3137.

[22] K. Palaniappan, I. Ersoy, and S. K. Nath, “Moving object
segmentation using the flux tensor for biological video
microscopy,” Lecture Notes in Computer Science (PCM),
vol. 4810, pp. 483–493, 2007.

[23] A. Mosig, S. Jaeger, W. Chaofeng, I. Ersoy, S. K. Nath,
K. Palaniappan, and S.S. Chen, “Tracking cells in live cell
imaging videos using topological alignments,” Algorithms in
Molecular Biology, vol. 4, pp. 10p, 2009.

[24] K. Palaniappan, H. S. Jiang, and T. I. Baskin, “Non-rigid
motion estimation using the robust tensor method,” in
IEEE CVPR Workshop on Articulated and Nonrigid
Motion, Washington DC, USA, June 27–July 2 2004, vol. 1,
pp. 25–33.

[25] K. Palaniappan, I. Ersoy, G. Seetharaman, S.R. Davis,
P. Kumar, R.M. Rao, and R. Linderman, “Parallel flux
tensor analysis for efficient moving object detection,” in Int.
Conf. Information Fusion, 2011, pp. 1–8.

[26] P. Kumar, K. Palaniappan, A. Mittal, and
G. Seetharaman, “Parallel blob extraction using the
multi-core cell processor,” in Advanced Concepts for
Intelligent Vision Systems. Springer, 2009, pp. 320–332.

[27] S. Mehta, A. Misra, A. Singhal, P. Kumar, A. Mittal, and
K. Palaniappan, “Parallel implementation of video
surveillance algorithms on GPU architectures using
CUDA,” in 17th IEEE Int. Conf. Advanced Computing and
Communications (ADCOM), 2009.

[28] M. Jiang and D. Crookes, “High-performance 3d median
filter architecture for medical image despeckling,”
Electronics Letters, vol. 42, no. 24, pp. 1379–1380, 2006.

[29] S. Perreault and P. Hébert, “Median filtering in constant
time,” IEEE Transactions on Image Processing, vol. 16, no.
9, pp. 2389–2394, 2007.

[30] T. Huang, G. Yang, and G. Tang, “A fast two-dimensional
median filtering algorithm,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 27, no. 1, pp.
13–18, 1979.

[31] F. Porikli, “Integral histogram: A fast way to extract
histograms in cartesian spaces,” in IEEE CVPR, 2005,
vol. 1, pp. 829–836.

[32] P. Bellens, et al., “Parallel implementation of the integral
histogram,” LNCS (ACIVS), vol. 6915, pp. 586–598, 2011.

[33] F. Porikli, “Constant time o (1) bilateral filtering,” in IEEE
CVPR 2008, 2008, pp. 1–8.

[34] Q. Yang, K.H. Tan, and N. Ahuja, “Real-time o (1)
bilateral filtering,” in IEEE CVPR 2009, 2009, pp. 557–564.

[35] A. Adams, J. Baek, and M.A. Davis, “Fast
high-dimensional filtering using the permutohedral lattice,”
in Computer Graphics Forum. Wiley Online Library, 2010,
vol. 29, pp. 753–762.

[36] M. Poostchi, K. Palaniappan, F. Bunyak, M. Becchi, and
G. Seetharaman, “Efficient GPU implementation of the
integral histogram,” in LNCS ACCV, Workshop on
Developer-Centred Computer Vision, 2012.

[37] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix
sum (scan) with CUDA,” in GPU Gems, vol. 3, chapter 39,
pp. 851–876. 2007.

[38] G. Ruetsch and P. Micikevicius, “Optimizing matrix
transpose in CUDA,” Nvidia CUDA SDK Application
Note, 2009.

[39] PETS 2013 Benchmark Data, 2012,
http://www.cvg.rdg.ac.uk/PETS2013/a.html#s3.

[40] Roland Miezianko, IEEE OTCBVS WS Series Bench;
Terravic Research Infrared Database.

8

